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Phase diffusion as a model for coherent suppression of tunneling in the presence of noise

J. Grondalski,1,2,* P. M. Alsing,1 and I. H. Deutsch2
1Albuquerque High Performance Computing Center, University of New Mexico, Albuquerque, New Mexico

2Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
~Received 9 August 2000; published 22 December 2000!

We study the stabilization of coherent suppression of tunneling in a driven double-well system subject to
random periodicd-function ‘‘kicks.’’ We model dissipation due to this stochastic process as a phase diffusion
process for an effective two-level system, and derive a corresponding set of Bloch equations with phase
damping terms that agree with the periodically kicked system at discrete times. We demonstrate that the ability
of noise to localize the system on either side of the double-well potential arises from overdamping of the phase
of oscillation, and not from any cooperative effect between the noise and the driving field. The model is
investigated with a square wave drive, which has qualitatively similar features to the widely studied cosinu-
soidal drive, but has the additional advantage of allowing one to derive exact analytic expressions.

DOI: 10.1103/PhysRevE.63.016114 PACS number~s!: 05.30.2d, 03.65.2w, 05.60.Gg, 05.40.Jc
ec
e

tia
ha
tw
c
is
y

pa
a

d

riv

e-
tio
w
e

s
n

he
oo
b
in

ns,
nd
ars
un-
e-
use
nds
ition
eas
nce.
ct
p-

the
n the
the

t

ially
b in
I. INTRODUCTION

Coherent suppression of tunneling is a localization eff
that occurs when a potential with multiple minima is expos
to a periodic drive in a specific parameter regime@1–3#. In
their original paper, Grossmanet al. @2# examined this phe-
nomena in the context of a quartic double-well poten
driven by a strong cosinusoidal force. It was later shown t
the essence of this effect could be described by the
lowest-energy eigenstates corresponding to the symmetriuS&
and antisymmetricuA& states of the ground state doublet. Th
approximation is valid if the drive strength, drive frequenc
and energy splitting are small compared to the energy s
ing between the average energy of the ground doublet
the higher energy levels@4#. The two level approximate
Hamiltonian for this system written in a basis of left an
right states,uL,R&5(uS&7uA&)/&, is described by a bare
tunneling system with an energy splittingAx and a cosine
driving force with amplitudeAz and frequencyvd ,

Ĥ~ t !5
Ax

2
ŝx1

Az

2
cos~vdt !ŝz . ~1!

A complete suppression of tunneling occurs when the d
amplitude is much larger than the energy splitting (Az
@Ax), and the ratio of the drive amplitude to the drive fr
quency is equal to a root of the zero order Bessel func
@4,5#. This absence of coherent oscillation is due to the t
Floquet states of the driven system becoming exactly deg
erate@6#.

A counterintuitive effect@6–8# occurs when dissipation i
added to this system. This can be modeled by the additio
a stochasticd-function kick, which is applied periodically
@6#. When the ratio of the amplitude to the frequency of t
periodic driving field is near but not equal to the Bessel r
condition in the absence of noise, coherent oscillations
tween the left and right wells proceed at a modified tunnel
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rate corresponding to the quasienergy splitting~see Fig. 1!.
At first, the effect of noise is to destroy coherent oscillatio
causing the system to evolve into a 50/50 mixture of left a
right wells. However, increasing the noise strength appe
to have a stabilizing effect on coherent suppression of t
neling @6,7#, causing the system to remain in the well corr
sponding to its initial state. This seems surprising beca
the condition for coherent suppression of tunneling depe
on the state of the system being in a stationary superpos
of the two degenerate Floquet states for all times, wher
dissipation generally tends to destroy quantum cohere
However, we will demonstrate that this localization effe
can be understood intuitively as arising from a strong dam

FIG. 1. The probability to be in the left well,PL , vs timet/td .
For the central cosinusoidal curve~solid line! s50, wheres is the
root mean variance of the probability distribution which governs
discrete random variable, we have coherent oscillations betwee
uL& and uR& states at a modified tunneling rate corresponding to
quasienergy splitting. In the central rapidly decaying curve~dashed
line!, s50.25, stochasticd-function kicks rapidly destroy coheren
oscillations. In the upper, slowly decaying curve~dash-dotted line!,
s52.5, the coherent suppression of tunneling has been part
restored by the increased noise strength. Compare this to Fig. 7
Ref. @6#, and Fig. 2 in Ref.@7#.
©2000 The American Physical Society14-1
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ing of the phase of oscillation. This was previously point
out by Makarov @9# using a semiclassical quantizatio
scheme to establish a correspondence between a class
driven two-level system and the spin-boson problem. St
dard treatments of dissipation based on the master equ
of a reduced density operator after tracing over a large
ervoir @7,9,10# can obscure the physical content of this loc
ization phenomena. Our treatment uses a simplified mo
based on a damping due to phase diffusion from rand
classical kicks. This model corresponds to the regime
weak coupling to a classical noise reservoir@9–11#. From
this we derive a detailed and exact expression for the tun
ing oscillations that gives a clear interpretation of this ph
nomena that excludes any cooperative effects between
noise and the driving field.

Dissipation in driven two level systems was extensiv
studied@6–10,12–21#, because this model provides a real
tic paradigm for understanding a variety of physical syste
For example this model can be used to describe charge
cillations in semiconductor double wells@22–24#, magnetic
flux dynamics in superconducting quantum interference
vices @25#, condensed phase electron and proton react
@26–28# and strong field spectroscopy@29,30#. Recently,
quantum tunneling over mesoscopic distances and the
eration of mesoscopic superposition states was realized i
optical lattice of double wells@31#. This system is ideally
suited for the study of a driven double well in the presence
dissipation, given the large degree of experimental con
one has over the system@32#. For example, the energy barrie
and energy assymmetry can be dynamically contro
through laser beam configuration and externally app
magnetic fields. Furthermore, this system can operate in
essentially dissipation free environment when the lattice
sers are sufficiently far detuned from the atomic resonan
Dissipation can then be reintroduced into the system in
form of well-controlled fluctuations in the potential@32,33#.

In this paper we replace the cosine drive field with a p
riodic square wave drive field. Our Hamiltonian reads

Ĥ~ t !5
Ax

2
ŝx1

Az

2
L~vdt !ŝz ,

~2!

L~vdt !5H 11 for 0<modtd
~ t !,

td

2

21 for
td

2
<modtd

~ t !,td

,

wheretd52p/vd is the drive period. This drive has qual
tative features similar to the sinusoidal force. For instan
the condition for coherent suppression of tunneling occ
when the ratio of the amplitude to the frequency of the dr
is equal to an integer rather than a root of the zero or
Bessel function. However, this Hamiltonian has the adv
tage that one can derive analytic results without making
proximations that are common when analyzing sinuso
drives. The paper is organized as follows. In Sec. II
present an effective magnetic field formalism in the Floq
basis, showing how one can describe the tunneling sys
01611
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with a set of Bloch equations associated with spin preces
about a fictitous static magnetic field. In Sec. III we sho
how one can use a phase diffusion model to describe
dissipation in terms of dephasing terms added to the Bl
equations, and we present results that compare nume
simulations to analytic expressions. In Sec. IV we summ
rize our results.

II. EFFECTIVE MAGNETIC FIELD
IN THE FLOQUET BASIS

As discussed above, we simplify the problem of a tunn
ing wave packet in a double well by considering the probl
restricted to the two lowest energy eigenstates. Because
is a two level system, one can visualize the dynamics g
metrically on the Bloch sphere with spin up and spin do
along the quantization axisẑ corresponding to the localize
uL& anduR& states, respectively. According to the bare Ham
tonian, the first term in Eq.~2!, tunneling on the Bloch
sphere is pictured as the Larmour precession of a Bloch v
tor s about a static magnetic field in thex̂ direction with a
frequencyvL5Ax(\51). When a drive is added to the tun
neling system, such as the square wave drive given in
~2!, the Hamiltonian becomes time dependent. In genera
drive term causes trajectories to explore the entire Blo
sphere in a complicated fashion@see Fig. 2~a!#. However,
when the ratio of the amplitude to the frequency of the dr
is an integer andAz@Ax , one finds that the trajectories o
the Bloch sphere form closed ‘‘loops’’ near the top~or bot-
tom! of the Bloch sphere which correspond to the quant
system remaining localized in theuL& ~or uR&! state@see Fig.
2~b!#. This is the coherent suppression of tunneling. N
that if the conditionAz@Ax ~typically Az /Ax*5! is not sat-
isfied then the system can still form closed trajectories
they do not stay ‘‘near’’ the top or bottom of the Bloc
sphere, and hence are not localizing.

According to the Floquet theorem@34,35#, a system with
a Hamiltonian that is periodic in time,Ĥ(t1td)5Ĥ(t), has
solutions to the Schro¨dinger equation,u« j&, which are eigen-
functions of the single period time propagator or Floqu
operator, (\51),

FIG. 2. The representation of coherent suppression of tunne
on the Bloch sphere for a two-level system initially in theuL& state:
~a! Trajectories off the condition of coherent suppression of tunn
ing wind up and down the Bloch sphere.~b! When the condition for
coherent suppression of tunneling is met trajectories form clo
‘‘loops’’ near the top~uL&! of the Bloch sphere.
4-2
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PHASE DIFFUSION AS A MODEL FOR COHERENT . . . PHYSICAL REVIEW E 63 016114
Û~td,0!5T̂ expS 2 i E
0

td
dt Ĥ~ t ! D , ~3!

whereT̂ denotes the time-ordering operator. The eigenval
of this propagator are given by

Û~td,0!u« j&5exp~2 i« jtd!u« j&, ~4!

where « j is a quasienergy which belongs to a family
quasienergies, such that« j1kvd ~wherek is an integer! be-
longs to the same physical state. Quasienergies can
uniquely defined by requiring them to continuously approa
the energies of the time independent Hamiltonian as the
riodic part vanishes. Because the Floquet states are statio
states at integer multiples oftd , we restrict time to these
discrete values. In this stroboscopic picture of the dynam
the Floquet states evolve like energy eigenstates for a ti
independent Hamiltonian, with the quasienergies playing
role of energies.

For a two level system we denote the Floquet sta
$u«2&,u«1&%. Writing the single period time propagator i
the Floquet basis and neglecting global phase factors gi

Û~td,0!51̂ cosS D«td

2 D2 i ~sŴ •êF!sinS D«td

2 D , ~5!

where D«5«12«2 is the quasienergy splitting, and th
quantization directionêF is chosen alongu«1&. We see that
the application of the single period time propagator can
thought of as a rotation about an effective magnetic fie
BF5D«êF . Because the single period time propagator co
mutes with itself at integer multiples of the drive period, t
unitary time propagator afterl drive periods is found froml

applications of the single period time propagator,Û( l td,0)
5Û(td,0)l( l 50,1,2,...). The end result of utilizing this rep
resentation is that one can replace the continuous dyna
of a time dependent Hamiltonian with a discrete dynam
associated with a time independent Hamiltonian described
a spin precession about a fictitous static magnetic field~see

FIG. 3. Analyzing the system in a Floquet basis allows one
replace the~a! complicated continuous dynamics associated wit
time dependent Hamiltonian with a~b! simple discrete dynamics
associated with Larmour precession about a fictitous static mag
field, BF . The two pictures agree exactly at these discrete tim
corresponding to integer multiples of the drive period.
01611
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Fig. 3!. This transformation is not an approximation, like th
well known rotating wave approximation; the two pictur
are in exact agreement at these discrete times. However
time resolution of the Bloch trajectories is fundamenta
limited by the drive period because this quasistatic pict
does not contain information about time scales shorter t
the drive period.

For the specific case of the square wave drive the t
dependent Hamiltonian can be decomposed into two t
independent Hamiltonians,Ĥ65(Ax/2)ŝx6(Az/2)ŝz . Ac-
cording to Eq.~2!, the single period unitary operator ca
be easily contructed by multiplying the two half-perio
unitaries,

Û~td,0!5expS 2 iĤ 2

td

2 DexpS 2 iĤ 1

td

2 D ~6a!

5F122 sin2S f

2 D sin2~u!G 1̂2F2i sinS f

2 D cosS f

2 D sin~u!G ŝx

1F2i sin2S f

2 D sin~u!cos~u!G ŝy , ~6b!

where f5AAx
21Az

2td , and tan(u)5Az/Ax . The effective
magnetic field for the square wave drive can be found a
lytically by comparing Eq.~6b! to

expS 2 i ~sŴ •n̂!
D«td

2 D51̂ cosS D«td

2 D2 i ~sŴ •n̂!sinS D«td

2 D ,

~7!

and solving for the four quantities$D«,nx ,ny ,nz%. With a
proper coordinate transformation, we find that the effect
magnetic field for a square wave drive can always be view
to be in the x̂ direction, $nx51, ny50, nz50%, and the
quasienergy splitting is given by

D«5
2

td
cos21~122 sin2~f/2!sin2~u!!. ~8!

One can verify that the effective magnetic field vanish
~Bloch vector trajectories form closed ‘‘loops’’ on the Bloc
sphere! when the second term in Eq.~8! vanishes@sin(f/2)
50#, giving the conditionAAx

21Az
2/vd5 j ~j is an integer!.

When Az@Ax this reduces to the conditionAz /vd5 j , the
same condition stated in Sec. I for coherent suppressio
tunneling by a square wave drive.

III. DISSIPATION

We next add dissipation to the system with stochastic
riodic d-function kicks@6#. Equation~2! is modified to read,

Ĥ~ t !5
Ax

2
ŝx1S Az

2
L~vdt !1(

l
j ld~ t2 l td! D ŝz , ~9!

wherej l is a discrete random variable governed by a dis
bution P(j), and defined by a mean,^j& and a variance
^j2&5s2. This model can be related to the widely studi
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J. GRONDALSKI, P. M. ALSING, AND I. H. DEUTSCH PHYSICAL REVIEW E63 016114
¡spin-boson model in the weak coupling limit, where dis
pation is accomplished through coupling to a reservoir
harmonic oscillators at temperatureT. We identify the vari-
ance withs254\21J(D«)coth(\D«/2kbT), whereJ(v) is
the ‘‘spectral function’’ of the reservoir@9,11#.

Without loss of generality we takêj&50, since a non-
zero mean can be removed by an appropriate redefinitio
the single period time propagator

Û~td,0!→expS 2 i ~sŴ • ẑ!
^j&
2 D Û~td,0!. ~10!

The average dynamics are essentially independent of the
cific shape of the distribution,P(j), because of the centra
limit theorem. On the Bloch sphere, the dynamics can
viewed as single period time rotation about the effect
magnetic field followed by a stochastic rotation about thẑ
axis by an anglej l ,

s~ t!5@Rẑ~j l !RF̂~D«td!# ls~0!. ~11!

Taking the rotations aboutẑ is completely general; kicks
about other directions can be implemented with an appro
ate unitary transformation. The mean trajectory is compu
by averaging over many realizations of the stochastic ev
tion. To see how the averaging affects the dynamics, c
sider the averagex and y components of the Bloch vecto
^sj (t)&( j 5x,y). After l periods of the drive, the random
rotations aboutẑ cause the components to execute a rand
walk in the x̂- ŷ plane. Accordingly, the angle in thex̂- ŷ
plane obeys a diffusion equation, and the meanx andy com-
ponents decay aŝsj ( l td)&5exp(2ltd /T2), where the char-
acteristic dephasing time isT252/s2 @36#. These decay
terms due to dephasing can be included in the Bloch eq
tions
s

de
s

q

th
so
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ṡx5~Bysz2Bzsy!2
1

T2
sx ,

ṡy~2Bxsz1Bzsx!2
1

T2
sy , ~12!

ṡz5~Bxsy2Bysx!.

Even though these are differential equations associated
a continuous time variable, there is an implicit understand
that the solutions to these equations agree with the real
tem only at multiple integers of the drive period,t5 l td .

As an example, we show how these Bloch equations
be used to derive the localization effect of dissipation cau
by stochastic rotations aboutẑ that was discussed in Sec.
We take the initial state to be localized in the left well. B
cause the effective magnetic field for the periodic squ
drive is only in the x̂ direction, the dynamics take plac
completely in theŷ- ẑ plane. This reduces the number
differential equations that need to be solved to two, wh
can be written as a single second order differential equat

s̈z1
1

T2
ṡz1~D«!2sz50, ~13!

with the initial conditions,$sz(0)51, ṡz(0)50%. The solu-
tion to this equation is the familiar damped harmonic osc
lator which can be solved in three regions: underdam
(D«2.b2), critically damped (D«25b2), and overdamped
(D«2,b2), whereb51/2T2 ,
sz~ t !55
1

cos~d!
e2bt cos~AD«22b2t2d!, D«2.b2

e2bt~11bt !, D«25b2

e2btFAb22D«21b

2Ab22D«2
exp~Ab22D«2t !1

Ab22D«22b

2Ab22D«2
exp~2Ab22D«2t !G D«2,b2,

~14!
ec.
our
curs
ical
d
riod.
har-
e.
ct

time
where tan(d)5b/AD«22b2.
For a particle initially in theuL& state and for parameter

of the Hamiltonian—Ax50.1,Az51.1, andvd51—we per-
form numerical simulations according to the procedure
scribed by Eq.~11!, and average over 500 Bloch trajectorie
We compare plots of the probabilityPL to be in theuL& state
vs time for these simulations with results obtained from E
~14! and find very good agreement@Figs. 4~a!–4~b!#. How-
ever, the model eventually breaks down whenT2,td @Fig.
4~d!#. In this regime the system is decaying faster than
oscillation frequency of the drive, the fundamental time re
-
.

.

e
-

lution for working in the Floquet basis as discussed in S
II. Fortunately, this restriction does not severely hamper
analysis, because coherent suppression of tunneling oc
when quasienergy splittings are small, and thus the crit
damping timeTc52/D«2, which divides the underdampe
and overdamped cases, is large compared to the drive pe
Therefore, Floquet analysis agrees with the damped
monic oscillator dynamics well into the overdamped regim

We are now in a position to explain the localization effe
of dissipation that was presented in Sec. I. For smalls, dis-
sipation causes the quantum oscillations to decay on a
4-4
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PHASE DIFFUSION AS A MODEL FOR COHERENT . . . PHYSICAL REVIEW E 63 016114
scaleT2 . Increasings ~decreasingT2! causes the oscilla
tions to decay on a shorter time scale until they reac
critical damping where the coherent oscillations are co
pletely destroyed. Increasings further causes the system
be overdamped, with a dephasing time given approxima
by 1/(T2D«2). In this regime increasings ~decreasingT2!
causes the system to decay on alonger time scale. The clas
sical noise localizes the state by destroying the phase co
ence necessary for transitions between the left and r
wells, and not by any cooperative effect between the no
and the driving field. This can be seen from the fact that t
localization effect would still occur, for a small enough ba
tunneling splitting, even if the drive were completely elim
nated. The reason this localization effect is stronger ‘‘nea
the condition for coherent suppression of tunneling is
cause the dephasing time for this overdamping is longe

FIG. 4. Comparison of numerical simulations~dotted line! to
analytic expressions~solid line!. Each graph plots the probabilit
PL to be in the left well vs timet/td , for the parametersAx50.1,
Az51.1, andvd51. There is excellent agreement for~a! under-
damped~s50.20, T2550td!, ~b! critically damped~s50.68, T2

54.28td!, and ~c! overdamped~s51.41, T251td! cases. The
model breaks down@~d! ~s52.5, T250.32td!# whenT2,td .
.
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smaller quasienergy splittings. This explains why dissipat
appears to ‘‘stabilize’’ coherent suppression of tunnelin
We have performed simulations for the two-level syste
driven by a cosine drive, and found similar results, the o
difference being that one must compute the effective m
netic field numerically.

IV. CONCLUSION

In this paper we studied the localization effect of dissip
tion caused by random periodicd-function ‘‘kicks’’ on a
driven two-level system. Utilizing a Floquet formalism, w
found that this type of dissipation could be modeled with
set of Bloch equations including phase damping terms.
dephasing times longer than the drive period, these equat
yield dynamics that agree with the periodically kicked sy
tem at discrete times. We considered a square wave driv
this paper because it gives the same qualitative results a
widely studied cosine drive, but it is simpler to study. W
found that the tunneling oscillations obey the equations o
damped harmonic oscillator, and that this localization eff
corresponds to overdamped tunneling oscillations. Thus
stabilization of coherent suppression of tunneling is due s
ply to strong phase damping of tunneling oscillations, wh
effectively projects the system into the pointer-basis set
the interaction of the system with the noisy environme
@37#, rather than a cooperative effect between the noise
the driven system. The simplified model studied in this pa
allows one to gain physical intuition about the stabilizati
of coherent suppression of tunneling in the presence of no
and may prove useful in the study of other driven dissipat
quantum systems in the weak coupling limit such as dyna
cal localization in a lattice@1,3,38# or quantum stochastic
resonance@39,40#. The utility of the square wave drive ove
the commonly studied sinusoidal drives may find wider a
plication in more general treatments of driven quantum d
sipative systems.
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