PHYSICAL REVIEW E, VOLUME 63, 016114

Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
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We study the stabilization of coherent suppression of tunneling in a driven double-well system subject to
random periodics-function “kicks.” We model dissipation due to this stochastic process as a phase diffusion
process for an effective two-level system, and derive a corresponding set of Bloch equations with phase
damping terms that agree with the periodically kicked system at discrete times. We demonstrate that the ability
of noise to localize the system on either side of the double-well potential arises from overdamping of the phase
of oscillation, and not from any cooperative effect between the noise and the driving field. The model is
investigated with a square wave drive, which has qualitatively similar features to the widely studied cosinu-
soidal drive, but has the additional advantage of allowing one to derive exact analytic expressions.
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I. INTRODUCTION rate corresponding to the quasienergy splittiege Fig. L

At first, the effect of noise is to destroy coherent oscillations,
Coherent suppression of tunneling is a localization effectausing the system to evolve into a 50/50 mixture of left and
that occurs when a potential with multiple minima is exposedight wells. However, increasing the noise strength appears
to a periodic drive in a specific parameter regifie-3]. In  to have a stabilizing effect on coherent suppression of tun-
their original paper, Grossmaat al. [2] examined this phe- neling[6,7], causing the system to remain in the well corre-
nomena in the context of a quartic double-well potentialsponding to its initial state. This seems surprising because
driven by a strong cosinusoidal force. It was later shown thathe condition for coherent suppression of tunneling depends
the essence of this effect could be described by the twon the state of the system being in a stationary superposition
lowest-energy eigenstates corresponding to the symnjgtric of the two degenerate Floquet states for all times, whereas
and antisymmetri¢A) states of the ground state doublet. This dissipation generally tends to destroy quantum coherence.
approximation is valid if the drive strength, drive frequency, However, we will demonstrate that this localization effect
and energy splitting are small compared to the energy spacan be understood intuitively as arising from a strong damp-
ing between the average energy of the ground doublet and
the higher energy level§4]. The two level approximate T
Hamiltonian for this system written in a basis of left and 0.91
right states,|L,R)=(|S)+|A))/v2, is described by a bare ‘

-
tunneling system with an energy splittiy, and a cosine o \
driving force with amplitudeA, and frequencywy, U

0.6f \\
N A, A R , \
H(t)= 703(-1— ?Cos(wdt)az. (1) o~ 050
U
A complete suppression of tunneling occurs when the drive 5|

amplitude is much larger than the energy splitting, (
>A,), and the ratio of the drive amplitude to the drive fre- 028
qguency is equal to a root of the zero order Bessel function  o.1f
[4,5]. This absence of coherent oscillation is due to the two , ‘ , ,
Floquet states of the driven system becoming exactly degen 0 200 400 t/ 600 800 1000
erate[6]. Y

A counte_rlntwtlve eﬁe(_:[6—8] occurs when dISSIpatIO.n. IS FIG. 1. The probability to be in the left welR, , vs timet/ 7.
added to this system. This can be modeled by the addition q{ . ; L - _

. . . . . A e or the central cosinusoidal cur¢solid line) =0, whereo is the

a stochastics-function kick, which is applied periodically

[6]. When the ratio of the amplitude to the frequency of theroot mean variance of the probability distribution which governs the

L L . . discrete random variable, we have coherent oscillations between the
periodic driving field is near but not equal to the Bessel r00t1L> and|R) states at a modified tunneling rate corresponding to the

condition in the absence of noise, coherent oscillations begyasienergy splitting. In the central rapidly decaying cudashed
tween the left and right wells proceed at a modified tunnelingine), =0.25, stochasti@-function kicks rapidly destroy coherent

oscillations. In the upper, slowly decaying curgash-dotted ling
o=2.5, the coherent suppression of tunneling has been partially
*URL: jcat@unm.edu;http://panda30.phys.unm.edu/Deutsch/  restored by the increased noise strength. Compare this to Fig. 7b in

Homepage.html Ref.[6], and Fig. 2 in Ref[7].
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ing of the phase of oscillation. This was previously pointed (a) (b)
out by Makarov [9] using a semiclassical guantization
scheme to establish a correspondence between a classical
driven two-level system and the spin-boson problem. Stan-
dard treatments of dissipation based on the master equatio
of a reduced density operator after tracing over a large ress"
ervoir[7,9,10 can obscure the physical content of this local-
ization phenomena. Our treatment uses a simplified mode -
based on a damping due to phase diffusion from randon
classical kicks. This model corresponds to the regime of
weak coupling to a classical noise reservi@~11. From y -1 -1 S, Sy -1 -1 s,
this we derive a detailed and exact expression for the tunnel-
ing oscillations that gives a clear interpretation of this phe- FIG. 2. The representation of coherent suppression of tunneling
nomena that excludes any cooperative effects between tham the Bloch sphere for a two-level system initially in {hé state:
noise and the driving field. (a) Trajectories off the condition of coherent suppression of tunnel-
Dissipation in driven two level systems was extensivelying wind up and down the Bloch sphee) When the condition for
studied[6—10,12—2], because this model provides a realis- coherent suppression of tunneling is met trajectories form closed
tic paradigm for understanding a variety of physical systems.!00ps” near the top(|L)) of the Bloch sphere.

Eiﬁ;t(iag(r?smiﬁk—}sém?c?no dduec!tg?ré:lfbllésailigzd—e;g“?neaczg'[igce ORiith a set of Bloch equations associated with spin precession
' 9 about a fictitous static magnetic field. In Sec. Ill we show

flux dynamics in superconducting quantum interference deg

vices [25], condensed phase electron and proton reactiongOW one can use a phase diffusion model to describe the
[26-29 and strong field spectroscopi29,30, Recently, issipation in terms of dephasing terms added to the Bloch

. S equations, and we present results that compare numerical
guantum tunneling over mesoscopic distances and the ge

. : ” . 9€%mulations to analytic expressions. In Sec. IV we summa-
eration of mesoscopic superposition states was realized in e our results
optical lattice of double well§31]. This system is ideally ’
suited for the study of a driven double well in the presence of
dissipation, given the large degree of experimental control
one has over the systei®2]. For example, the energy barrier
and energy assymmetry can be dynamically controlled As discussed above, we simplify the problem of a tunnel-
through laser beam configuration and externally appliedng wave packet in a double well by considering the problem
magnetic fields. Furthermore, this system can operate in arestricted to the two lowest energy eigenstates. Because this
essentially dissipation free environment when the lattice lais a two level system, one can visualize the dynamics geo-
sers are sufficiently far detuned from the atomic resonancemetrically on the Bloch sphere with spin up and spin down
Dissipation can then be reintroduced into the system in thalong the quantization axi corresponding to the localized

1
1

Il. EFFECTIVE MAGNETIC FIELD
IN THE FLOQUET BASIS

form of well-controlled fluctuations in the potentig82,33. IL) and|R) states, respectively. According to the bare Hamil-
In this paper we replace the cosine drive field with a pe-tonian, the first term in Eq(2), tunneling on the Bloch
riodic square wave drive field. Our Hamiltonian reads sphere is pictured as the Larmour precession of a Bloch vec-

tor s about a static magnetic field in thedirection with a
frequencyw, =A,(£=1). When a drive is added to the tun-
neling system, such as the square wave drive given in Eq.
2) (2), the Hamiltonian becomes time dependent. In general, a
T4 drive term causes trajectories to explore the entire Bloch
+1 for Osmod.,d(t)<§ sphere in a complicated fashidsee Fig. 2a)]. However,
Alwgt) = , when the ratio of the amplitude to the frequency of the drive
is an integer and\,>A,, one finds that the trajectories on
the Bloch sphere form closed “loops” near the tap bot-
tom) of the Bloch sphere which correspond to the quantum
where r4=2m/wq is the drive period. This drive has quali- System remaining localized in the) (or |R)) state[see Fig.
tative features similar to the sinusoidal force. For instance2(b)]. This is the coherent suppression of tunneling. Note
the condition for coherent suppression of tunneling occurghat if the conditionA,>A, (typically A,/A,=5) is not sat-
when the ratio of the amp”tude to the frequency of the driveiSfied then the system can still form closed trajectories but
is equal to an integer rather than a root of the zero ordethey do not stay “near” the top or bottom of the Bloch
Bessel function. However, this Hamiltonian has the advansphere, and hence are not localizing.
tage that one can derive analytic results without making ap- According to the Floquet theoref84,35, a system with
proximations that are common when analyzing sinusoidah Hamiltonian that is periodic in timé](t+ 74) =H(t), has
drives. The paper is organized as follows. In Sec. Il wesolutions to the Schdinger equationje;), which are eigen-
present an effective magnetic field formalism in the Floquefunctions of the single period time propagator or Floquet
basis, showing how one can describe the tunneling systemperator, f=1),

A, .
(TX+ 7A(wdt)a'z,

.
-1 for Edsmod,d(t)<7-d
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Fig. 3. This transformation is not an approximation, like the
well known rotating wave approximation; the two pictures
are in exact agreement at these discrete times. However, the
time resolution of the Bloch trajectories is fundamentally
limited by the drive period because this quasistatic picture
does not contain information about time scales shorter than
the drive period.

For the specific case of the square wave drive the time
dependent Hamiltonian can be decomposed into two time
independent Hamiltoniandd . = (A/2)5* (A,/2)5,. Ac-

Sy - s Sy -1 s cording to Eq.(2), the single period unitary operator can
be easily contructed by multiplying the two half-period

FIG. 3. Analyzing the system in a Floguet basis allows one tounitaries,
replace thga) complicated continuous dynamics associated with a

time dependent Hamiltonian with @) simple discrete dynamics - _ A TY A Ty
associated with Larmour precession about a fictitous static magnetld (7a:0) =€xp —IH_—=jexp —iH .= (6a)
field, Bz . The two pictures agree exactly at these discrete times
corresponding to integer multiples of the drive period. ® ) b é
={1—23ir12(§)sir12(0)}1— 2i sin(E cos(E Sin(6) | oy
~ A~ 7d ~
U(rd,O):Tex;{—if dtH(t)), 3 b
0 +]2i sinz(E sin(@)cod §) | &y, (6b)
where7 denotes the time-ordering operator. The eigenvalues )
magnetic field for the square wave drive can be found ana-
U(Td,0)|sj)=exp(—isjrd)|sj>, (4) lytically by comparing Eq(6b) to
AeTy

where g; is a quasienergy which belongs to a family of exp{ _i(é,_.ﬁ)AsTd> =1cos(m) —i(f?-ﬁ)sin(

quasienergies, such that+kwy (Wherek is an integer be- 2

longs to the same physical state. Quasienergies can be (7

uniquely defined by requiring them to continuously approach

the energies of the time independent Hamiltonian as the peq

riodic part vanishes. Because the Floquet states are stationd? anetic field for a sauare wave drive can alwavs be viewed

states at integer multiples af;, we restrict time to these o ge in thex direct?on =1 n,—0 n,—0} yand the

discrete values. In this stroboscopic picture of the dynamics . o U e Ty Tz ’

the Floquet states evolve like energy eigenstates for a timequaSlenergy splitting is given by

independent Hamiltonian, with the quasienergies playing the 2

role of energies. Ae=—cos }(1—2 sirf($/2)sir?(9)). (8
For a two level system we denote the Floquet states Td

{le_),|e+)}. Writing the single period time propagator in

the Floquet basis and neglecting global phase factors give

nd solving for the four quantitiefAe,n,,ny,n,}. With a
oper coordinate transformation, we find that the effective

One can verify that the effective magnetic field vanishes
?Bloch vector trajectories form closed “loops” on the Bloch

A spher¢ when the second term in E(B) vanisheq sin(¢/2)

N . ETq . .. Lo .

—|(a~eF)sm< 5 ) (5) =0], giving the cond|t|on\/AX2+A22/wd=J (j is an integer.
When A,> A, this reduces to the conditioA,/wy=], the
same condition stated in Sec. | for coherent suppression of
tunneling by a square wave drive.

ETY

- N A
U(Td,0)=1co<

where Ae=¢, —¢_ is the quasienergy splitting, and the
quantization directiorg- is chosen alonge , ). We see that

the application of the single period time propagator can be
thought of as a rotation about an effective magnetic field,

Br=Ae&: . Because the single period time propagator COM-  \ye next add dissipation to the system with stochastic pe-
mutes with itself at integer multiples of the drive period, thejggic s-function kicks[6]. Equation(2) is modified to read,
unitary time propagator aftdrdrive periods is found fronh
applications of the single period time propagal!fjl(,l 74,0)

= U(Td,O)'(I =0,1,2,...). The end result of utilizing this rep-
resentation is that one can replace the continuous dynamics
of a time dependent Hamiltonian with a discrete dynamicsvhereé, is a discrete random variable governed by a distri-
associated with a time independent Hamiltonian described bgution P(¢), and defined by a mear¢) and a variance

a spin precession about a fictitous static magnetic fisé#  (£2)=02. This model can be related to the widely studied

IIl. DISSIPATION

2 A (A X
R =5 ot 5 Mwd) + 2 §3(t=179) |72, (9)
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ispin-boson model in the weak coupling limit, where dissi-
pation is accomplished through coupling to a reservoir of
harmonic oscillators at temperatufe We identify the vari-
ance witho?=4#"1J(Ae)cothfiAe/2k,T), whered(w) is
the “spectral function” of the reservoi,11].

Without loss of generality we také£)=0, since a non-
zero mean can be removed by an appropriate redefinition of
the single period time propagator

1
5= (Bys,—B,sy)— T—2 Sy s

Sy(—Bys,+B;s)— —s (12

T

. R (&) . 5,= (Bxsy—=Bysy).
U(Td,O)—>eX4—i(6"2) T)U(Td,O). (10

Even though these are differential equations associated with
The average dynamics are essentially independent of the spa-continuous time variable, there is an implicit understanding
cific shape of the distributiorP (&), because of the central that the solutions to these equations agree with the real sys-
limit theorem. On the Bloch sphere, the dynamics can beéem only at multiple integers of the drive peridds| 7.
viewed as single period time rotation about the effective As an example, we show how these Bloch equations can
magnetic field followed by a stochastic rotation about the be used to derive the localization effect of dissipation caused
axis by an angl€, by stochastic rotations abo#tthat was discussed in Sec. .

We take the initial state to be localized in the left well. Be-
S(t) =[Ry( &) Re(Ae79)]'S(0).

cause the effective magnetic field for the periodic square
Taking the rotations about is completely general; kicks

drive is only in theX direction, the dynamics take place
completely in they-z plane. This reduces the number of
theollj;ﬁg;ert:j;nesﬁg?:%ﬁgg t_’l_eh'emrgfget?;ed \tN'th an approE)rl ifferential equations that need to be solved to two, which
Y L jectory is COMPUIEEAn be written as a single second order differential equation,
by averaging over many realizations of the stochastic evolu-
tion. To see how the averaging affects the dynamics, con-
sider the averag& andy components of the Bloch vector
(sj(t))(j=x,y). After | periods of the drive, the random
rotations aboug cause the components to execute a random
walk in the X-y plane. Accordingly, the angle in thgy
plane obeys a diffusion equation, and the mgamdy com-
ponents decay a&s;(l74))=exp(— Ird/Tz) where the char-
acteristic dephasing time i¥,=2/0? [36]. These decay
terms due to dephasing can be included in the Bloch equaAe?>3?), critically damped (&2

13

1 —5,+(Ag)?s,=0, (13
2

T

with the initial conditions{s,(0)=1, §,(0)=0}. The solu-
tion to this equation is the familiar damped harmonic oscil-
lator which can be solved in three regions: underdamped
=3?), and overdamped

tions

- Bt 2_ 24
cos(a‘)e cog VAe—Bt—9),

e A1+ pt),
Ry

2\ B%—A€?

Sy(t) =9

— exp VB2 A2+ ————

\

where tan§)=g/\JAe?— 2.

For a particle initially in theL) state and for parameters
of the Hamiltonian-A,=0.1,A,=1.1, andwy= 1—we per-
form numerical simulations according to the procedure de
scribed by Eq(11), and average over 500 Bloch trajectories.
We compare plots of the probabilif§;, to be in thelL) state
vs time for these simulations with results obtained from Eq
(14) and find very good agreemeffigs. 4a)—4(b)]. How-
ever, the model eventually breaks down whes< 74 [Fig.

(Ae?< B?), whereB=1/2T,,

Ae?> p?
ASZZIBZ (14)
‘/ A _
o exp( VBZ—Ag2) | Ae?<p?

—

lution for working in the Floguet basis as discussed in Sec.
Il. Fortunately, this restriction does not severely hamper our
analysis, because coherent suppression of tunneling occurs
when quasienergy splittings are small, and thus the critical
damping timeT.=2/Ae?, which divides the underdamped
and overdamped cases, is large compared to the drive period.
Therefore, Floquet analysis agrees with the damped har-
monic oscillator dynamics well into the overdamped regime.
We are now in a position to explain the localization effect

4(d)]. In this regime the system is decaying faster than thef dissipation that was presented in Sec. I. For smallis-
oscillation frequency of the drive, the fundamental time resosipation causes the quantum oscillations to decay on a time

016114-4
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(a) {b)
1 1
a~ 05 (I e =
00 50 100 00 50 100
(©) (d)
1 1
a~ 05 0.5
00 50 100 00 50 100
tit o tit »

FIG. 4. Comparison of numerical simulatiofdotted ling to

analytic expressiongsolid line). Each graph plots the probability

P, to be in the left well vs time/ 74, for the parameterd,=0.1,
A,=1.1, andwy=1. There is excellent agreement f@ under-
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smaller quasienergy splittings. This explains why dissipation
appears to “stabilize” coherent suppression of tunneling.
We have performed simulations for the two-level system
driven by a cosine drive, and found similar results, the only
difference being that one must compute the effective mag-
netic field numerically.

IV. CONCLUSION

In this paper we studied the localization effect of dissipa-
tion caused by random periodiéfunction “kicks” on a
driven two-level system. Utilizing a Floquet formalism, we
found that this type of dissipation could be modeled with a
set of Bloch equations including phase damping terms. For
dephasing times longer than the drive period, these equations
yield dynamics that agree with the periodically kicked sys-
tem at discrete times. We considered a square wave drive in
this paper because it gives the same qualitative results as the
widely studied cosine drive, but it is simpler to study. We
found that the tunneling oscillations obey the equations of a
damped harmonic oscillator, and that this localization effect
corresponds to overdamped tunneling oscillations. Thus this

damped(oc=0.20, T,=507y), (b) critically damped(c=0.68, T,
=4.28rq4), and (c) overdamped(oc=1.41, T,=174) cases. The
model breaks dowf(d) (¢=2.5,T,=0.32rg)] whenT,<r4.

stabilization of coherent suppression of tunneling is due sim-
ply to strong phase damping of tunneling oscillations, which
effectively projects the system into the pointer-basis set by
the interaction of the system with the noisy environment
scaleT,. Increasingo (decreasingT,) causes the oscilla- [37], rather than a cooperative effect between the noise and
tions to decay on a shorter time scale until they reach ahe driven system. The simplified model studied in this paper
critical damping where the coherent oscillations are comallows one to gain physical intuition about the stabilization
pletely destroyed. Increasing further causes the system to of coherent suppression of tunneling in the presence of noise,
be overdamped, with a dephasing time given approximatelyand may prove useful in the study of other driven dissipative
by 1/(T,A&?). In this regime increasing (decreasingr,) quantum systems in the weak coupling limit such as dynami-
causes the system to decay oloagertime scale. The clas- cal localization in a latticd1,3,38 or quantum stochastic
sical noise localizes the state by destroying the phase coheresonanc¢39,40. The utility of the square wave drive over
ence necessary for transitions between the left and righthe commonly studied sinusoidal drives may find wider ap-
wells, and not by any cooperative effect between the noiselication in more general treatments of driven quantum dis-
and the driving field. This can be seen from the fact that thisipative systems.

localization effect would still occur, for a small enough bare

tunneling splitting, even if the drive were completely elimi- ACKNOWLEDGMENTS
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